skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cohen, Rachel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseCo‐occurring plant species that share generalist pollinators often exchange pollen. This heterospecific pollen transfer (HPT) impacts male and female reproductive success through pollen loss and reductions in seed set, respectively. The resulting fitness cost of HPT imposes selection on reproductive traits (e.g., floral color and shape), yet we currently lack strong predictors for the post‐pollination fate of heterospecific pollen, especially within community and phylogenetic contexts. MethodsWe investigated the fate of heterospecific pollen at three distinct stages of plant reproduction: (1) pollen germination on the stigma, (2) pollen tube growth in the style, and (3) fertilization of ovules. We experimentally crossed 11 naturally co‐flowering species in the subalpine meadows of the Colorado Rocky Mountains, across a spectrum of phylogenetic relatedness. Using generalized linear mixed models and generalized linear models, we evaluated the effect of parental species identity and phylogenetic relatedness on pollen tube growth at each reproductive stage. ResultsWe found that heterospecific pollen tubes can germinate and grow within pistils at each reproductive stage, even when parental species are >100 My divergent. There was no significant effect of phylogenetic distance on heterospecific pollen success, and no evidence for a mechanism that suspends heterospecific pollen germination or pollen tube growth within heterospecific stigmas or styles. ConclusionsOur results show that even in communities where HPT is common, pre‐zygotic post‐pollination mechanisms do not provide strong barriers to interspecific fertilization. HPT can result in the loss of ovules even between highly diverged plant species. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  2. The Department of Biological Sciences at Minnesota State University, Mankato, a primarily undergraduate institution, is developing and implementing the “Research Immersive Scholastic Experience in Biology” (RISEbio) program. RISEbio is a National Science Foundation-funded scholarship and support program that is targeting incoming Biological Sciences freshmen with demonstrated financial need and academic potential. The overall goal of RISEbio is to increase student academic success through: (1) Increasing student social integration and support, (2) developing student technical and professional skills, and (3) implementing a freshman immersive research program. To form a social support network, scholars will be part of a RISEbio learning community. A unique, core component of RISEbio is to provide scholars with an authentic real-world research experience by modifying freshman research initiatives utilized by research-intensive universities to fit within the available infrastructure at Minnesota State University, Mankato. During a scholar’s first year, they exchange their Introductory Biology 1 lab for an applied course, Foundational Methods in Biology. In their second semester, scholars join a research stream in exchange for their Introductory Biology 2 lab. The stream research continues on to their third semester. One of two initial research streams is focused on neuroscience and is titled “Brain and Behavior.” Students in this stream examine the neural control of reproductive behavior by examining gene expression in the brain of the seasonally breeding green anole lizard (Anolis carolinensis). Students will extract RNA from the hypothalamus of breeding and non-breeding lizard brains, then design primers and use quantitative PCR in conjunction with bioinformatic analysis to identify genes that are differentially expressed in the brain between seasons. If differentially expressed genes are found, students will learn how to design and perform in situ hybridizations to examine the localization of these genes within the brain. Following the third semester, scholars enter the “next steps” stage which offers support to identify additional opportunities on and off campus, including mentoring the next group of RISEbio Scholars or joining research labs to continue conducting undergraduate research. RISEbio will also provide a platform to test how this program translates to student persistence and academic success. To our knowledge, this is the first freshman research initiative developed at a regional comprehensive university. 
    more » « less